Skip Navigation Linksلیست مقالات ترجمه شده / خرید و دانلود
1,302,550

پیش از اقدام به خرید ترجمه فارسی می توایند نسخه انگلیسی را به صورت رایگان دانلود و بررسی نمایید. متن چکیده و ترجمه آن در پایین همین صفحه قابل مشاهده است.
دانلود رایگان مقاله انگلیسی
موسسه ترجمه البرز اقدام به ترجمه مقاله " مهندسی فناوری اطلاعات " با موضوع " پيشنهادهاي مبتني بر توزيع دلخواهانه داده داراي حريم خصوصي " نموده است که شما کاربر عزیز می توانید پس از دانلود رایگان مقاله انگلیسی و مطالعه ترجمه چکیده و بخشی از مقدمه مقاله، ترجمه کامل مقاله را خریداری نمایید.
عنوان ترجمه فارسی
پيشنهادهاي مبتني بر توزيع دلخواهانه داده داراي حريم خصوصي
نویسنده/ناشر/نام مجله :
Data & Knowledge Engineering
سال انتشار
2012
کد محصول
1005960
تعداد صفحات انگليسی
18
تعداد صفحات فارسی
42
قیمت بر حسب ریال
1,195,000
نوع فایل های ضمیمه
Pdf+Word
حجم فایل
1 مگا بایت
تصویر پیش فرض




Abstract

Collaborative filtering (CF) systems use customers' preferences about various products to offer recommendations. Providing accurate and reliable predictions is vital for both e-commerce companies and their customers. To offer such referrals, CF systems should have sufficient data. When data collected for CF purposes held by a central server, it is an easy task to provide recommendations. However, customers' preferences represented as ratings might be partitioned between two vendors. To supply trustworthy and correct predictions, such companies might desire to collaborate. Due to privacy concerns, financial fears, and legal issues; however, the parties may not want to disclose their data to each other.

In this study, we scrutinize how to estimate item-based predictions on arbitrarily distributed data (ADD) between two e-commerce sites without deeply jeopardizing their privacy. We analyze our proposed scheme in terms of privacy; and demonstrate that the method does not intensely violate data owners' confidentiality. We conduct experiments using real data sets to show how coverage and quality of the predictions improve due to collaboration. We also investigate our scheme in terms of online performance; and demonstrate that supplementary online costs caused by privacy measures are negligible. Moreover, we perform trials to show how privacy concerns affect accuracy. Our results show that accuracy and coverage improve due to collaboration; and the proposed scheme is still able to offer truthful predictions with privacy concerns

چکيده

سيستم هاي فيلترينگ همبستگي (CF) ـ پالايش اجتماعي ـ از علائق مشتريان درمورد محصولات مختلف جهت ارائه پيشنهادات استفاده مي کنند. ارائه پيش بيني هاي دقيق و قابل اعتماد براي هر دو گروه شرکت تجارت الکترونيک و مشتريان آنها بسيار حياتي است. سيستم هاي CF براي ارائه اينگونه ارجاع ها، بايد اطلاعات کافي داشته باشد. مواقعي که داده ها براي اهداف CF توسط يک سرور مرکزي نگهداري ميشود، ارائه پيشنهادات کار ​​آساني است. بهرحال، امکان دارد علائق مشتريان در قالب رتبه بندي بين دو فروشنده تقسيم مي شود. براي عرضه پيش قابل اعتماد و صحيح، اين قبيل شرکتها ممکن است تمايل به همکاري داشته باشند. با توجه به نگراني هاي حريم خصوصي، ترس مالي و مسائل حقوقي، ممکن است بخش ها تمايلي به افشاي داده هاي خود براي يکديگر نداشته باشند.

در اين مطالعه چگونگي تخمين پيش بيني هاي مبتني بر داده روي داده هاي توزيع شده دلخواهانه بين دو سايت تجارت الکترونيک (بدون به خطر افتادن جدي حريم خصوصي شان) را به دقت بررسي نموديم. طرح پيشنهادي را از نظر حريم خصوصي تجزيه و تحليل و نشان مي دهيم که محرمانه بودن مالکين داده ها به شدت نقص نمي شود. آزمايشات را با استفاده از مجموعه اطلاعات واقعي انجام داده تا چگونگي بهبود پوشش و کيفيت پيش بيني هاي ناشي از همکاري، نشان دهيم. همچنين اين طرح را از لحاظ عملکرد آنلاين بررسي و نشان داديم که هزينه هاي آنلاين مکمل ناشي از حريم خصوصي، قابل اغماض مي باشند. علاوه بر اين آزمايشاتي را جهت نمايش تأثير دقت روي نگراني هاي حفظ حريم خصوصي (Privacy) انجام داديم . نتايج ما نشان داد که دقت و پوشش با توجه به همکاري بهبود مي يابد؛ و طرح پيشنهاد شده قادر به ارائه پيش بيني هاي درست با نگراني هاي حريم خصوصي است.

1-مقدمه

اخيراً سيستم هاي پيشنهاد گر تبديل به جزء بسيار ضروري و همه کاره برنامه هاي کاربردي کسب و کار الکترونيکي شده اند [1]. فيلترينگ مشارکتي (CF) يک روش مؤثر براي پيشنهاد اقلام مطابق با سليقه هاي مشتريان مي باشد. طرز کار اصليCF اين است که کاربراني که درگذشته آيتم هاي مشابه را انتخاب مي کرده اند، در آينده نيز به آيتم هاي مشابهي علاقه مند خواهند بود[2]. سيستم هاي CF با توجه به سليقه و رفتار کاربران در خريد، يک پروفايل براي آنها ايجاد و سپس سليقه ها و فرايند تصميم گيري در فعاليتهايي از قبيل خريد، گوش دادن، تماشا و ... هدايت مي کنند....



این مقاله ترجمه شده مهندسی فناوری اطلاعات در زمینه کلمات کلیدی زیر است:






Privacy
Data mining
Arbitrarily distributed data
Collaborative filtering
Accuracy

ثبت سفارش جدید