Skip Navigation Linksلیست مقالات ترجمه شده / مقالات ترجمه شده مهندسی كامپيوتر /

عنوان ترجمه شده مقاله: روش خوشه بندی مضاعف در پنهان سازی قواعد وابستگی (انجمنی)

قواعد وابستگی از جمله مهمترین تکنیک ها در داده کاوی می باشد که برای استخراج الگوهای پنهان و اطلاعات در داده هایی با حجم زیاد مورد استفاده قرار می گیرد
Abstract

Association rules are among important techniques in data mining which are used for extracting hidden patterns and knowledge in large volumes of data. Association rules help individuals and organizations take strategic decisions and improve their business processes. Extracted association rules from a database contain important and confidential information that if published, the privacy of individuals may be threatened. Therefore, the process of hiding sensitive association rules should be performed prior to sharing the database. This is done through changing the database transactions. These changes must be made in such a way that all sensitive association rules are hidden and a maximum number of non-sensitive association rules are extractable from the sanitized database. In fact, a balance is to be established between hiding the sensitive rules and extracting the non-sensitive rules. A new algorithm is presented in this paper to create a balance between preserving privacy and extracting knowledge. The items of sensitive rules are clustered in the proposed algorithm, in order to reduce changes. In fact, reduction of changes and clustering of rules are applied in order to reduce the side effects of the hiding process on non-sensitive rules

چکیده

قواعد وابستگی از جمله مهمترین تکنیک ها در داده کاوی می باشد که برای استخراج الگوهای پنهان و اطلاعات در داده هایی با حجم زیاد مورد استفاده قرار می گیرد. قواعد وابستگی به افراد و سازمانها کمک می کنند تا تصمیمات راهبردی خود را اتخاذ کنند و فرایند های کسب و کار خود را بهبود بخشند. قواعد وابستگیِ استخراج شده از یک پایگاه داده، حاوی اطلاعات مهم و محرمانه ای است که اگر منتشر شود، حریم شخصیِ افراد شاید به خطر بیافتد. بنابراین، فرایند پنهان سازی قواعد وابستگیِ حساس باید قبل از اشتراک پایگاه داده صورت گیرد. این امر بواسطۀ تغییر تراکنش های اخیر در پایگاه داده صورت می گیرد. این تغییرات باید طوری انجام شوند تا تمامی قواعد وابستگی حساس پنهان شوند و بیشترین تعداد قواعد وابستگی غیرحساس از پایگاه دادۀ - که محتویات آن حفظ شده ولی نام و ظاهر آن تغییر یافته - قابل استخراج باشند. درحقیقت، بایستی تعادل و موازنه ای میان پنهان سازی قواعد حساس و استخراجِ قواعد غیرحساس ایجاد نمود. یک الگوریتم جدید در این مقاله برای ایجاد تعادل بین حفظ حریم شخصی و استخراج معلومات ارائه خواهد شد. آیتم های قواعد حساس در الگوریتم های پیشنهادی خوشه بندی می شوند تا تغییرات به حداقل رسانده شود. درواقع، کاهش تغییرات و خوشه بندیِ قواعد جهت کاهش تاثیرات جانبیِ فرایند پنهان سازی قواعد غیرحساس بکار برده می شوند.

1-مقدمه

داده کاوی ابزاری قدرتمند برای آنالیز و خلاصه سازی داده می باشد. داده کاوی، برای استخراج اطلاعات و معلومات پنهان در حجم عظیمی از داده ها قابل استفاده است. امروزه از داده کاوی بطور گسترده در بازاریابی، تحلیل های پزشکی و تجاری استفاده می شود. اطلاعات استخراج شده با استفاده از ابزار داده کای حاوی اطلاعات حساس و مهمی است که اگر منتشر گردد، حریم شخصی افراد و موسسات بخطر می افتد. حفظ حریم شخصی در داده کاوی (PPDM)، از اطلاعات حساس دربرابر الگوریتم های داده کاوی محافظت می کند...


موسسه ترجمه البرز اقدام به ترجمه مقاله " مهندسی فناوری اطلاعات " با موضوع " روش خوشه بندی مضاعف در پنهان سازی قواعد وابستگی (انجمنی) " نموده است که شما کاربر عزیز می توانید پس از دانلود رایگان مقاله انگلیسی و مطالعه ترجمه چکیده و بخشی از مقدمه مقاله، ترجمه کامل مقاله را خریداری نمایید.
عنوان ترجمه فارسی
روش خوشه بندی مضاعف در پنهان سازی قواعد وابستگی (انجمنی)
نویسنده/ناشر/نام مجله :
Journal of Advances in Computer Research
سال انتشار
2016
کد محصول
1009561
تعداد صفحات انگليسی
21
تعداد صفحات فارسی
28
قیمت بر حسب ریال
970,000
نوع فایل های ضمیمه
Pdf+Word
حجم فایل
1 مگا بایت
تصویر پیش فرض


این مقاله ترجمه شده را با دوستان خود به اشتراک بگذارید
سایر مقالات ترجمه شده مهندسی فناوری اطلاعات , مهندسی كامپيوتر را مشاهده کنید.
کاربر عزیز، بلافاصله پس از خرید مقاله ترجمه شده مقاله ترجمه شده و با یک کلیک می توانید مقاله ترجمه شده خود را دانلود نمایید. مقاله ترجمه شده خوداقدام نمایید.
جهت خرید لینک دانلود ترجمه فارسی کلیک کنید
جستجوی پیشرفته مقالات ترجمه شده
برای کسب اطلاعات بیشتر، راهنمای فرایند خرید و دانلود محتوا را ببینید
هزینه این مقاله ترجمه شده 970000 ریال بوده که در مقایسه با هزینه ترجمه مجدد آن بسیار ناچیز است.
اگر امکان دانلود از لینک دانلود مستقیم به هر دلیل برای شما میسر نبود، کد دانلودی که از طریق ایمیل و پیامک برای شما ارسال می شود را در کادر زیر وارد نمایید


این مقاله ترجمه شده مهندسی فناوری اطلاعات در زمینه کلمات کلیدی زیر است:






Data Mining
Association Rules
Frequent Item-sets
Privacy Preserving Data Mining
Clustering

تاریخ انتشار در سایت: 2016-12-13
جستجوی پیشرفته مقالات ترجمه شده
نظرتان در مورد این مقاله ترجمه شده چیست؟

ثبت سفارش جدید